Total time: 75 minutes.

Total points: 100.
Problem 1 (20 points). Find the general solution to the following system of differential equations.

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} y_{1}}{\mathrm{~d} t}=4 y_{1}-2 y_{2} \\
\frac{\mathrm{~d} y_{2}}{\mathrm{~d} t}=y_{1}+2 y_{2}
\end{array}\right.
$$

This is $\frac{\mathrm{d} \mathbf{Y}}{\mathrm{d} t}=A \mathbf{Y}$ with $A=\left(\begin{array}{cc}4 & -2 \\ 1 & 2\end{array}\right)$. First calculate eigenvalues:

$$
\begin{gathered}
(4-\lambda)(2-\lambda)-(-2) \cdot 1=0 \\
\lambda^{2}-6 \lambda+10=0 \\
\lambda=\frac{6 \pm \sqrt{36-40}}{2}=3 \pm i
\end{gathered}
$$

Take the eigenvalue $\lambda=3+i$, calculate eigenvector

$$
\mathbf{v}=\binom{2}{4-(3+i)}=\binom{2}{1-i}
$$

Then a complex solution is

$$
\begin{aligned}
\mathbf{Y}=e^{(3+i) t}\binom{2}{1-i}= & e^{3 t}(\cos t+i \sin t)\binom{2}{1-i}=e^{3 t}\binom{2 \cos t+2 i \sin t}{\cos t+i \sin t-i \cos t+\sin t} \\
& =e^{3 t}\binom{2 \cos t}{\cos t+\sin t}+i e^{3 t}\binom{2 \sin t}{\sin t-\cos t}
\end{aligned}
$$

Taking real / imaginary parts as special solutions, we get the general solution as

$$
\mathbf{Y}=C_{1} e^{3 t}\binom{2 \cos t}{\cos t+\sin t}+C_{2} e^{3 t}\binom{2 \sin t}{\sin t-\cos t}
$$

Problem 2 (20 points). Solve the following initial value problem.

$$
\frac{\mathrm{d} \mathbf{Y}}{\mathrm{~d} t}=\left(\begin{array}{cc}
-3 & 1 \\
6 & 2
\end{array}\right) \mathbf{Y}, \quad \mathbf{Y}(0)=\binom{3}{-1}
$$

First calculate eigenvalues:

$$
\begin{gathered}
(-3-\lambda)(2-\lambda)-1 \cdot 6=0 \\
\lambda^{2}+\lambda-12=0 \\
(\lambda+4)(\lambda-3)=0 \\
\lambda_{1}=-4, \quad \lambda_{2}=3
\end{gathered}
$$

The corresponding eigenvectors:

$$
\mathbf{v}_{1}=\binom{-1}{1}, \quad \mathbf{v}_{1}=\binom{-1}{-6}
$$

Therefore the general solution is

$$
\mathbf{Y}=C_{1} e^{-4 t}\binom{-1}{1}+C_{2} e^{3 t}\binom{-1}{-6}
$$

Using the initial condition, we get

$$
\binom{3}{-1}=C_{1}\binom{-1}{1}+C_{2}\binom{-1}{-6}
$$

that is,

$$
-C_{1}-C_{2}=3, \quad C_{1}-6 C_{2}=-1
$$

Solve to get

$$
C_{1}=-\frac{19}{7}, \quad C_{2}=-\frac{2}{7}
$$

Therefore the solution to initial value problem is

$$
\mathbf{Y}=-\frac{19}{7} e^{-4 t}\binom{-1}{1}-\frac{2}{7} e^{3 t}\binom{-1}{-6}
$$

Problem 3 (20 points). Sketch the phase portrait of the following system of differential equations.

$$
\frac{\mathrm{d} \mathbf{Y}}{\mathrm{~d} t}=\left(\begin{array}{cc}
1 & 4 \\
-2 & -3
\end{array}\right) \mathbf{Y}
$$

First calculate eigenvalues:

$$
\begin{gathered}
(1-\lambda)(-3-\lambda)-4 \cdot(-2)=0 \\
\lambda^{2}+2 \lambda+5=0 \\
\lambda=\frac{-2 \pm \sqrt{4-20}}{2}=-1 \pm 2 i
\end{gathered}
$$

Therefore we have a spiral sink. To determine its rotation direction, we check the vector field at $(1,0)$:

$$
\left(\begin{array}{cc}
1 & 4 \\
-2 & -3
\end{array}\right)\binom{1}{0}=\binom{1}{-2}
$$

which points into the fourth quadrant. Therefore we get the following picture:

Problem 4 (20 points). Find the general solution to the following differential equation.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+8 y=3 e^{2 t}
$$

First calculate eigenvalues:

$$
\begin{gathered}
s^{2}+6 s+8=0 \\
(s+2)(s+4)=0 \\
s_{1}=-2, \quad s_{2}=-4
\end{gathered}
$$

Therefore the right hand side exponent, 2 , is not an eigenvalue. Try $y(t)=C e^{2 t}$:

$$
\begin{gathered}
4 C e^{2 t}+6 \cdot 2 C e^{2 t}+8 \cdot C e^{2 t}=3 e^{2 t} \\
24 C=3 \\
C=\frac{1}{8}
\end{gathered}
$$

Therefore we get a particular solution

$$
y(t)=\frac{1}{8} e^{2 t}
$$

Therefore the general solution is

$$
y(t)=\frac{1}{8} e^{2 t}+C_{1} e^{-2 t}+C_{2} e^{-4 t}
$$

Problem 5 ($15+5=20$ points). Consider the following differential equation.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 y=\sin (2 t) \quad \cdots(1)
$$

(1) Find the general solution.

First consider the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 y=e^{2 i t} \tag{2}
\end{equation*}
$$

First calculate eigenvalues:

$$
\begin{gathered}
s^{2}+4=0 \\
s= \pm 2 i
\end{gathered}
$$

Therefore the right hand side exponent, $2 i$, is a single eigenvalue. Try $y(t)=C t e^{2 i t}$:

$$
\begin{gathered}
C\left(4 i e^{2 i t}-4 t e^{2 i t}\right)+4 C t e^{2 i t}=e^{2 i t} \\
4 i C=1 \\
C=\frac{1}{4 i}=-\frac{1}{4} i
\end{gathered}
$$

Therefore we get a particular solution to equation (2):

$$
y(t)=-\frac{1}{4} i t e^{2 i t}=-\frac{1}{4} i t(\cos 2 t+i \sin 2 t)=\frac{1}{4} t \sin 2 t-i \frac{1}{4} t \cos 2 t
$$

Taking imaginary part, we get a particular solution to equation (1):

$$
y(t)=-\frac{1}{4} t \cos 2 t
$$

Therefore the general solution to equation (1) is

$$
y(t)=-\frac{1}{4} t \cos 2 t+C_{1} \cos 2 t+C_{2} \sin 2 t
$$

(2) Describe the qualitative behavior of a solution to this differential equation as t gets large.

As t gets large, a solution oscillates with larger and larger amplitude, showing a resonance phenomenon.

