Problem 1: The Gauss-Lobatto quadrature on the interval $[-1,1]$ is a quadrature rule of the form

$$
\int_{-1}^{1} f(x) d x \approx A_{0} f(-1)+A_{n} f(1)+\sum_{i=1}^{n-1} A_{i} f\left(x_{i}\right)
$$

where $x_{1}, \ldots, x_{n-1}, A_{0}, \ldots, A_{n}$ are chosen so that the quadrature is exact for any polynomial with degree no more than $2 n-1$. The following procedure gives the construction of the Gauss-Lobatto quadrature.
(1) Let $P_{n}(x)$ denote the Legendre polynomial of degree n (i.e., orthogonal polynomial on $[-1,1]$ with weight function $w(x)=1)$. Prove that $P_{n}^{\prime}(x)$ has $n-1$ distinct zeros in $(-1,1)$.
(2) Denote the zeros of $P_{n}^{\prime}(x)$ as x_{1}, \ldots, x_{n-1}. Prove that the above quadrature is exact for any polynomial with degree no more than n if A_{0}, \ldots, A_{n} are properly chosen.
(3) For any polynomial f with degree no more than $2 n-1$, do the polynomial division

$$
f(x)=p(x) q(x)+r(x), \quad \operatorname{deg}(p) \leq n-2, \operatorname{deg}(r) \leq n
$$

where $q(x):=(x-1)(x+1) P_{n}^{\prime}(x)$ is a polynomial of degree $n+1$. Use this to prove that the quadrature is exact for f.

Problem 2: Prove that the weights A_{0}, \ldots, A_{n} in Problem 1 are positive.
Problem 3: Derive the order conditions up to second order for a general explicit Runge-Kutta method.

Problem 4: A diagonally implicit RK method is given by a Butcher table whose $\left\{a_{j k}\right\}$ matrix is lower-triangular. Each stage is given by the implicit equation

$$
x^{(j)}=x_{i}+h \sum_{k=1}^{j} a_{j k} f\left(t_{i}+c_{k} h, x^{(k)}\right), \quad j=1, \ldots, s
$$

Consider a diagonally implicit RK method with Butcher table

$$
\begin{array}{l|ll}
c_{1} & \gamma & 0 \\
c_{2} & \delta & \gamma \\
\hline & \delta & \gamma
\end{array}
$$

Determine δ and γ so that this method has second order accuracy.

