Problem 1: Write codes for LU-decomposition (Gaussian elimination) which can handle row exchanges. We will apply it to solve $A \mathbf{x}=\mathbf{b} . A$ is an $n \times n$ matrix with each entry a random number in $[-1,1]$, with $n=100$. Take the exact solution \mathbf{x} as a random vector and calculate the corresponding \mathbf{b}. Then apply your codes to solve \mathbf{x} from $A \mathbf{x}=\mathbf{b}$.
Consider the following pivoting strategies: (1) no pivoting; (2) partial pivoting; (3) scaled partial pivoting. For each strategy, run the above numerical test 5 times and print the error $\left\|\mathbf{x}_{\text {numerical }}-\mathbf{x}_{\text {exact }}\right\|$ (with any matrix norm).
Repeat the above with a modified matrix A : each row of the original A is multiplied by a random number between 1 and 1000.

Problem 2: Write codes for Jacobi iteration, Gauss-Seidel iteration and conjugate gradient method. Make sure your codes can take advantage of sparse matrices. Consider an $n \times n$ tri-diagonal matrix A with $a_{i i}=a_{0}, a_{i, i+1}=a_{+}, a_{i, i-1}=a_{-}$with $n=1000$. Generate \mathbf{x}, \mathbf{b} as in Problem 1.
Test Jacobi, Gauss-Seidel with the following examples: $\left(a_{0}, a_{+}, a_{-}\right)=(2,1,-1),\left(a_{0}, a_{+}, a_{-}\right)=$ $(1,0.3,0.5)$. Test all three methods with the following examples: $\left(a_{0}, a_{+}, a_{-}\right)=(2,-1,-1)$. You should print the number of iterations when the desired tolerance is achieved. You should also print the error $\left\|\mathbf{x}_{\text {numerical }}-\mathbf{x}_{\text {exact }}\right\|$ by using the known exact solution, and observe how it is related with the tolerance you used.
For the last example, also apply the SOR method with a few choices of the parameter ω, and observe which choice gives the fewest number of iterations.

Problem 3: Write codes for preconditioned conjugate gradient method. Take A as the following $n \times n$ tri-diagonal matrix with $n=1000$: generate the numbers c_{1}, \ldots, c_{n-1} as random numbers between 1 and $100 ; a_{i, i+1}=a_{i+1, i}=-c_{i}$ for $i=1, \ldots, n-1 ; a_{i i}=c_{i}+c_{i-1}$ for $i=1, \ldots, n$, with c_{0} and c_{n} regarded as 0 . Generate \mathbf{x}, \mathbf{b} as in Problem 1. Compare the number of iterations for the original conjugate gradient method and the preconditioned conjugate gradient method with the Jacobi preconditioner.

Problem 4: Consider the following $m^{2} \times m^{2}$ matrix A : the diagonal entries are all 4; For the other (i, j) entries, write $i=\left(i_{1}-1\right) m+i_{2}$ with $i_{1}, i_{2} \in\{1, \ldots, m\}$, and the (i, j) entry is -1 whenever $\left|i_{1}-j_{1}\right|+\left|i_{2}-j_{2}\right|=1$, otherwise the (i, j) entry is 0 . (This matrix arises when solving 2D Poisson equation. It is irreducibly diagonally-dominant, symmetric positive definite, sparse, but does not have a tri-diagonal structure.)
For $m=10,20,40,80$, apply Gaussian elimination and conjugate gradient method to solve $A \mathbf{x}=\mathbf{b}$, where \mathbf{x}, \mathbf{b} are generated as in Problem 1 (with reasonable tolerance for conjugate gradient method). Compare their run times.

Problem 5: Write codes for the power method for matrix eigenvalues. Run it for a random complex $n \times n$ matrix with $n=10$ and obtain its largest eigenvalue (in absolute value) and its eigenvector. Check your result by checking the equation $A \mathbf{v}=\lambda \mathbf{v}$. Do this test for 10 different matrices.
Do the same for random real matrices. Do you observe any different phenomenon? Try to explain.

