Preconditioned conjugate gradient method
Solve $A \vec{x}=\vec{b}$, A sym. posclef.
If one can find Q sym. posdef. which is easy to invert and approximate A well, then, writing

$$
\begin{gathered}
Q^{-1}=S S^{\top} \\
\underbrace{S^{\top} A S}_{\hat{A}} \underbrace{S^{-1} \vec{x}}_{\hat{x}}=\underbrace{S^{\top} \hat{b}}_{\hat{b}}
\end{gathered}
$$

$L_{\text {sym. posdef. }}$
If $Q=A$ was true, then $\hat{A}=S^{\top} S^{-\top} S^{-1} S=I$
\Rightarrow If Q approximates A well, then we expect $k(\hat{A}) \ll k(A)$
Conjugate gradient for $\hat{A} \hat{\bar{x}}=\hat{\bar{b}}$
In each iteration
(1) $\hat{t}_{k}=\frac{\left\langle\hat{\vec{r}}^{(k)}, \hat{\vec{r}}^{(b)}\right\rangle}{\left\langle\hat{\vec{v}}^{(k)}, \hat{A} \hat{\vec{v}}^{(k)}\right\rangle}$

$$
\begin{aligned}
\left\langle\vec{r}^{(k)}, \vec{v}^{(k)}\right\rangle & =\left\langle\vec{r}^{(k)}, \vec{r}^{(k)}\right\rangle \\
\vec{r}^{(b)} & =\vec{b}-A{\underset{r}{ }}_{(k)}
\end{aligned}
$$

(2) $\hat{\vec{x}}^{(k+1)}=\hat{\vec{x}}^{(k)}+\hat{t}_{n} \hat{\vec{V}}^{(k)}$
(3) $\hat{\vec{r}}^{(k+1)}=\hat{\vec{r}}^{(k)}-\hat{t}_{k} \hat{A} \hat{v}^{(k)}$

$$
\begin{aligned}
& \vec{r}^{(k)}=\vec{b}-A \vec{x}^{(k)} \\
& =S^{-T} \hat{\hat{b}}-S^{-T} \hat{A} S^{-1} S \hat{\hat{x}}^{(k)} \\
& =S^{-T}\left(\hat{\vec{b}}-\hat{A} \hat{x}^{(k)}\right)
\end{aligned}
$$

(4) $\hat{S}_{k}=\frac{\left\langle\hat{\vec{r}}^{(n+1)}, \hat{\vec{r}}^{(k+1)}\right)}{\left\langle\hat{\vec{r}}^{(b)}, \hat{\vec{r}}^{(k)}\right)}$
(5) $\hat{\vec{v}}^{(k+1)}=\hat{\vec{r}}^{(k+1)}+\hat{S}_{k} \hat{v}^{(k)}$

Notation: $\vec{x}^{(k)}=S \hat{\vec{x}}^{(k)} \quad \vec{v}^{(k)}=S \hat{\vec{v}}^{(k)} \quad \vec{r}^{(k)}=S^{-T} \hat{\vec{r}}^{(k)}$
$S \cdot$ (2) $\quad \vec{x}^{(k+1)}=\vec{x}^{(k)}+\hat{t}_{k} \vec{v}^{(k)}$
$S \cdot(5)$

$$
\begin{aligned}
\vec{v}^{(k+1)} & =S \hat{\vec{r}}^{(k+1)}+\hat{S}_{k} \vec{v}^{(k)} \quad\langle x, B y\rangle=\left\langle B^{\top} x, y\right\rangle \\
& =S S^{\top} \vec{r}^{(k+1)}+\hat{S}_{k} \vec{v}^{(k)} \\
& =Q^{-1} \vec{r}^{(k+1)}+\hat{S}_{k} \vec{v}^{(k)} .
\end{aligned}
$$

(1)

$$
\begin{aligned}
\hat{t}_{k} & =\frac{\left\langle\hat{\vec{r}}^{(h)}, \hat{\vec{r}}^{(k)}\right\rangle}{\left\langle\hat{\vec{v}}^{(h)}, \hat{A} \hat{v}^{(h)}\right\rangle}=\frac{\left\langle S^{\top} \vec{r}^{(h)} \cdot S^{\top} \vec{r}^{(k)}\right\rangle}{\left\langle S^{-1} \vec{v}^{(h)} \cdot \hat{A} S^{-1} \vec{v}^{(h)}\right\rangle} \\
& =\frac{\left\langle\vec{r}^{(h)}, S S^{\top} \vec{r}^{(h)}\right\rangle}{\left\langle\vec{v}^{(h)}, S^{-\top} \hat{A} S^{-1} \vec{v}^{(h)}\right\rangle}=\frac{\left\langle\vec{r}^{(h)}, Q^{-1} \dot{r}^{(k)}\right\rangle}{\left\langle\vec{v}^{(h)} \cdot A \vec{v}^{(h)}\right\rangle} .
\end{aligned}
$$

- Choose the preconditioned Q

Jacobi preconditioner: $Q=$ diagonal of A
5. 1 Power method for matrix eigenvalue

Let A be an $a \times n$ matrix (possibly w/ complex entries).
Then the characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)
$$

(de gan poly. in λ). It has n complex roots (counting multiplicities), which are the (complex) eigenvalues of A.

- To find eigenvalues, one can calculate coefficients of $\operatorname{det}(A-\lambda I)$ and apply a polynomial root finding algorithm. However, this doesn't work for large n because polynomial roots can be very sensitive to polynomial coefficients.

Power method
Suppose the eigenvalues $\lambda_{1}, \cdots, i_{n}$ satisfy

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \geqslant \cdots \geqslant\left|\lambda_{n}\right|
$$

and A is diagonalizable over \mathbb{C}, i.e., \exists basis $\vec{u}^{(1)}, \cdots, \bar{u}^{(n)} \in \mathbb{C}^{n}$ st.

$$
A \vec{u}^{(i)}=\lambda_{i} \vec{u}^{(i)} \quad i=1, \cdots, n
$$

Then we take an initial vector $\vec{x}^{(0)} \in \mathbb{C}^{\sim}$, write

$$
\vec{x}^{(0)}=a_{1} \vec{u}^{(1)}+\cdots+a_{n} \vec{u}^{(n)} \quad \text { assume } a_{1} \neq 0
$$

Do iteration

$$
\vec{x}^{(k+1)}=A \vec{x}^{(k)}
$$

Then

$$
\begin{aligned}
& \vec{x}^{(k)}=A^{k} \vec{x}^{(0)}=a_{1} A^{k} \vec{u}^{(1)}+\cdots+a_{n} A^{k} \vec{u}^{(n)} \\
&=a_{1} \lambda_{1}^{k} \vec{u}^{(1)}+a_{2} \lambda_{2}^{k} \vec{u}^{(2)}+\cdots+a_{n} \lambda_{n}^{k} \vec{u}^{(n)} \\
&=a_{1} \lambda_{1}^{k}\left(\vec{u}^{(1)}+\frac{a_{2}}{a_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \vec{u}^{(2)}+\cdots+\frac{a_{n}}{a_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \vec{u}^{(n)}\right) \\
& \mid \cdot 1<1
\end{aligned}
$$

As $k \rightarrow \infty, \vec{x}^{(k)}$ "converges" to the direction $\vec{u}^{(1)}$.
To get a numerical approximation of λ_{1}

$$
\vec{x}^{(k)} \approx a_{1} \lambda_{1}^{k} \vec{u}^{(n)} \quad \vec{x}^{(k+1)} \approx a_{1} \lambda_{1}^{k+1} \vec{u}^{(1)}
$$

By taking a linear function ϕ on \mathbb{C}^{n}

$$
\phi(\vec{x})=c_{1} x_{1}+\cdots+c_{n} x_{n}
$$

(such that $\phi\left(\vec{u}^{(1)}\right) \neq 0$)

$$
\begin{aligned}
& \phi\left(\dot{x}^{(k+1)}\right) \approx \phi\left(\lambda_{1} \vec{x}^{(k)}\right)=\lambda_{1} \phi\left(\vec{x}^{(k)}\right) \\
& \Rightarrow \lambda_{1} \approx \frac{\phi\left(\bar{x}^{(k+1)}\right)}{\phi\left(\bar{x}^{(h)}\right)}
\end{aligned}
$$

- Power method can only give the largest eigenvalue λ_{1}.

Inverse power method
Suppose $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|>0$
Then A^{-1} has eigenvalues
$\lambda_{n}^{-1}, \cdots, \lambda_{1}^{-1}$ which satisfy

$$
\begin{gathered}
A \vec{u}=\lambda \vec{u} \\
\frac{1}{\lambda} \vec{u}=A^{-1} \vec{u}
\end{gathered}
$$

$$
\left|\lambda_{n}^{-1}\right|>\left|\lambda_{n-1}^{-1}\right| \geqslant \cdots \geqslant\left|\lambda_{1}^{-1}\right|
$$

Applying power method to A^{-1}, i.e.,
$\bar{x}^{(k+1)}=A^{-1} \vec{x}^{(k)} \quad$ (that is, solving $\vec{x}^{(k+1)}$ from $A \vec{x}^{(k+1)}=\vec{x}^{(k)}$)
we can find λ_{n}^{-1} which gives λ_{n} (the smallest eigenvalue of A).
Shifted inverse power method
Take $\mu \in \mathbb{C}$. The matrix $(A-\mu I)^{-1}$ has eigenvalues

$$
\left(\lambda_{1}-\mu\right)^{-1}, \ldots,\left(\lambda_{n}-\mu\right)^{-1}
$$

$$
(A-\mu I) \vec{u}=(\lambda-\mu) \vec{u}
$$

Applying power method to $(A-\mu \Sigma)^{-1}$, we get the $\left(\lambda_{i}-\mu\right)^{-1}$ $\omega /$ the largest absolute value among $\left(\lambda_{1}-\mu\right)^{-1}, \ldots,\left(\lambda_{n}-\mu\right)^{-1}$ i.e., we get the eigenvalue λ_{i} of A which is the closest to μ

