Problem 1: Formulate a statement about the uniqueness of QR-factorization for invertible square matrices and prove it. (imitate that for LU-factorization)

Problem 2: Prove the following error estimate for the power method for eigenvalues: Let A be an $n \times n$ diagonalizable complex matrix, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ satisfying

$$
\left|\lambda_{j}\right| \leq \beta\left|\lambda_{1}\right|, \quad j=2, \ldots, n
$$

for some $0<\beta<1$. Denote $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ as the corresponding eigenvectors. Let the initial vector

$$
\mathbf{x}_{0}=\sum_{j=1}^{n} c_{j} \mathbf{v}_{j}
$$

with $c_{1} \neq 0$. Let ϕ be a linear functional on \mathbb{C}^{n} satisfying $\phi\left(\mathbf{v}_{1}\right) \neq 0$. Prove that the k-th iteration \mathbf{x}_{k} satisfies

$$
\left|\frac{\phi\left(\mathbf{x}_{k+1}\right)}{\phi\left(\mathbf{x}_{k}\right)}-\lambda_{1}\right| \leq C \beta^{k}
$$

for suitable constant $C>0$. (here you also need to prove that $\phi\left(\mathbf{x}_{k}\right) \neq 0$ for sufficiently large k so that the above fraction is well-defined.)

Problem 3: Consider the distinct nodes x_{0}, \ldots, x_{n} in $[a, b]$, and a function f. Let $p_{i, j}$ denote the polynomial interpolation of f at $x_{i}, x_{i+1}, \ldots, x_{j}$ for any $0 \leq i \leq j \leq n$. In the lecture we proved

$$
p_{0, n}(x)=p_{0, n-1}(x) \cdot \frac{x_{n}-x}{x_{n}-x_{0}}+p_{1, n}(x) \cdot \frac{x-x_{0}}{x_{n}-x_{0}}
$$

(in the proof of iterative formula for divided difference, with a slightly different notation).
(1) Use it to prove the following generalization: for any $1 \leq k \leq n$, there exists polynomials $q_{0, n-k}, \ldots, q_{k, n}$ of degree at most k, such that

$$
p_{0, n}(x)=\sum_{j=0}^{k} p_{j, n-k+j}(x) q_{j, n-k+j}(x)
$$

(2) Derive the explicit formulas for the q polynomials when $k=2$.
(3) What are the q polynomials when $k=n$?

Problem 4: Consider the following variant of the Hermite interpolation: take the distinct nodes x_{0}, \ldots, x_{n} in $[a, b]$, a positive integer K and a function f (with enough regularity). We want to find a polynomial p of degree at most $m=(n+1) K$ such that the following $m+1$ conditions are satisfied:

$$
p^{(j)}\left(x_{i}\right)=f^{(j)}\left(x_{i}\right), \quad 0 \leq i \leq n, 0 \leq j \leq K-1 ; \quad \int_{a}^{b} p(x) d x=\int_{a}^{b} f(x) d x
$$

Determine whether this problem always have a solution for any $n, a, b, x_{0}, \ldots, x_{n}, f$, for the following choices of K : if yes, prove it; if no, find an explicit example so that the solution does not exist or is not unique.
(1) $K=2$;
(2) $K=3$.

